
A fanciful view of an atom in super- 
fluid helium-4 (blue) being struck by a 
neutron (red) and then bouncing off the 

interaction potentials of neighboring 
atoms. These so-called final-state 

interactions prevent direct observation 
of the Bose condensate~the exotic state 

of matter whose existence was proposed in 
1938 by Fritz London as an explanation of 
superfluidity. Although the rune above, by 

E. C. Svensson, appeared in 1983 (in 75th 
Jubilee Conference on Helium-41, its 
claim was only recently confirmed. 



superfluid helium and neutron scattering 
- 

a new chapter in the 
CONDENSATE SAGA 

by Richard N.  Silver 

T 
he unusual properties of helium at temperatures near absolute zero have been 
an endless source of fascination for condensed-matter physicists. Helium is 
the only atomic system that avoids crystallization and instead remains a fluid 

to arbitrarily low temperature. Moreover, when a liquid composed of ^He atoms is 
cooled below a critical temperature TA (equal to 2.17 kelvins at atmospheric pres- 
sure), it passes from a normal-fluid state, so called because its properties are similar 
to those of other fluids, to a superfluid state, having dramatically different properties. 
A normal fluid possesses a finite viscosity, or resistance to shear flow, and therefore 
current flows dissipate in the absence of a driving force. A normal fluid also has a fi- 
nite thermal conductivity, or the ability to support temperature gradients. In contrast, 
a superfluid has a zero viscosity and an infinite thermal conductivity. In a superfluid 
quantized currents persist indefinitely, and temperature fluctuations propagate like 
waves. In addition, numerous other properties of superfluids lie outside the realm of 
common experience. Finally, unlike the behavior of normal fluids, which can usually 
be described in terms of classical mechanics, the exotic behavior of liquid helium be- 
low TA requires a quantum-mechanical description. For that reason superfluid helium 
is called a quantum fluid. 

In this article we focus on a single question: What quantum features of helium 
atoms at temperatures below TA might explain the transition from normal-fluid to 
superfluid behavior? We shall eventually arrive at a clear answer, but the route we 
must follow to find it is circuitous. Along the way we will explore much of the his- 
tory of and current research on quantum fluids and learn about related research in 
many areas of modem physics. We will see that the high fluxes of epithermal neu- 
trons available at pulsed neutron sources, such as those at Argonne and Los Alamos 
National Laboratories, are a powerful tool in addressing our central question. 

An important clue to the answer comes from comparing the behavior of two dif- 
ferent helium fluids, one composed of ' ~ e  atoms and the other of '^He atoms. Both 
isotopic species have identical interatomic interactions, and the difference in their 
masses has a negligible effect on their behavior. Under atmospheric pressure both 
remain fluids to arbitrarily low temperatures. However, ^ ~ e  undergoes a superfluid 
transition at 2.17 kelvins, but 'He does not become a superfluid until below 3 mil- 
likelvins. The transition temperatures of the two species differ by three orders of 
magnitude! 

The origin of that great difference can be traced to the spin-statistics relation, 
the fundamental principle of quantum mechanics that distinguishes 'He from ^ ~ e .  
Statistics refers to symmetry properties of the wave function describing a system 
of identical (and therefore indistinguishable) particles. The 'He nucleus, composed 
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of two protons and one neutron, has a spin of i; that is, it has an intrinsic angular 
momentum of $5, where^ is Planck's constant divided by 27r. (Electrons also have 
a spin of 4, but the spins of the two electrons in each helium atom are antiparallel 
and thus contribute a total spin of zero.) According to the spin-statistics relation, a 
system of identical particles having half-integer spin must be described by a many- 
particle wave function that is a completely antisymmetric function of the particle po- 
sitions. Such a function is zero when two particles have the same position. There- 
fore, since the probability of finding particles at given positions is the square of the 
wave function, the spin-statistics relation alone requires particles with half-integer 
spin to avoid one another even in the absence of any repulsive potential between 
them. The antisymmetry of the wave function is thus the origin of the famous Pauli 
exclusion principle, which requires that no two electrons in an atom occupy the same 
atomic orbital. (Particles with half-integer spin are termed fermions, and the spin- 
statistics relation for fermions is called Fermi-Dirac statistics.) 

The converse is true for 'He atoms. The 'He nucleus, composed of two protons 
and two neutrons, has a spin of 0, and so also does the 'He atom. According to the 
same spin-statistics relation, a system of identical particles having integer spin must 
be described by a many-particle wave function that is a completely symmetric func- 
tion of the particle positions. A completely symmetric function is larger when two 
particles occupy the same position. Hence, the spin-statistics relation requires integer- 
spin particles, such as spin-0 ' ~ e  atoms and spin-1 photons, to be attracted to one 
another even in the absence of any attractive potential between them. (Particles with 
integer spin are termed bosons, and the spin-statistics relation for bosons is called 
Bose-Einstein statistics.) 

Although the spin-statistics relation applies to the microscopic behavior of a sys- 
tem of identical particles, its effects are visible at the human, or macroscopic, level 
of perception. For example, if all the electrons in an atom could occupy the lowest 
atomic orbital, then the universe as we know it would collapse. Fortunately elec- 
trons are fermions, and such a collapse is forbidden by the Pauli exclusion princi- 
ple. An outstanding macroscopic effect for bosons is the phenomenon of lasing. A 
laser can produce an intense beam of coherent light because the photons emitted by 
a large population of excited atoms are allowed, and indeed prefer, to enter the same 
quantum-mechanical state. 

In 1938 Fritz London proposed that the superfluidity observed in liquid ' ~ e  ear- 
lier that year was just such a macroscopic manifestation of the symmetry requirement 
for the wave function of a system of identical bosons, an insight that preceded the 
invention of lasers by twenty-seven years. He reasoned by analogy with the theoret- 
ically predicted behavior of a non-interacting gas of spin-0 particles obeying Bose- 
Einstein statistics. His argument is given in terms of the momentum wave function 
of the system, which is simply the Fourier transform of the position wave function 
mentioned above. (Position and momentum are expressed mathematically in quantum 
mechanics as Fourier conjugate variables that obey the Heisenberg uncertainty princi- 
ple, A p h  <^fi, where Ap and Ax are the uncertainties in momentum and position. 

Consider a system of identical atoms inside a box of finite size. The probabil- 
ity that an atom has momentum of magnitude p in, say, the x direction is termed the 
momentum distribution, n(p). For all systems of atoms obeying classical mechanics, 
n(p) is given by a Maxwell-Boltzmann distribution, which is a Gaussian function of 
width Ap = dmkv,T in each direction. Here m is the atomic mass, ky is Boltzmann's 
constant, and T is temperature. This classical-mechanical momentum distribution is 
independent of any interactions between the atoms and yields an average kinetic, or 
thermal, energy (oc (Ap)2/2m) per atom of $ k g .  Thus, all liquids that obey classi- 
cal mechanics must crystallize as the temperature is lowered because the potential en- 
ergy gained by the localization of atoms at lattice sites overcomes the kinetic energy 
due to thermal motion. That 'He and ^ ~ e  require a quantum description is already 
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evident from the fact that they remain liquid all the way down to absolute zero. 
In quantum mechanics the momenta of atoms in a finite-sized box are quantized 

in integer multiples of R L 1 ,  where L is a dimension of the box. This quantization is 
a consequence of the requirement that the-wave function of an atom must be zero at 
the boundaries of the box and therefore must have an integral number of nodes. Thus 
the momentum distribution for the system is discontinuous (unlike the continuous 
Maxwell-Boltzman distribution of classical systems) and becomes continuous only for 
a box of infinite size. 

Now consider the momentum distribution for a non-interacting (ideal) gas of 
spin-0 atoms. At high temperature the atoms are thermally excited, and the proba- 
bility of an atom being in any particular momentum state is inversely proportional 
to the size of the system ( L ~ )  and proportional to a Maxwell-Boltzmann distribution. 
However, as the temperature is reduced, the preference of bosons for occupying the 
same momentum state causes deviations from the Maxwell-Boltzmann distribution. 
As the temperature is further reduced below a critical Bose-condensation temperature, 
a significant fraction of the atoms begin to occupy the lowest (or zero) momentum 
state. The fraction, no, is called the Bose-condensate fraction, and its value is inde- 
pendent of the size of the system. In the momentum distribution no shows up as a 
delta function, of weight no, at p = 0. The width Ap of the momentum distribution 
for the remainder of the atoms is on the order of VmkpT and goes to zero at zero 
temperature. On the other hand, no approaches one as the temperature approaches 
zero; that is, the entire system becomes a Bose condensate. Figure 1 shows plots of 
k2n(k) versus k for a system of non-interacting bosons at various temperatures. (In 
this article momentum p and the wave vector k = p/K are used interchangeably. The 

natural unit for wave-vector magnitudes is the inverse angstrom, A ' . )  Figure 2 is a 
plot of the Bose-condensate fraction no versus temperature. 

London reasoned that the superfluidity observed in ' ~ e  was a macroscopic con- 
sequence of the microscopic Bose condensation of ' ~ e  atoms into the zero- 

MOMENTUM DISTRIBUTIONS 
IN AN IDEAL BOSE GAS 

Fig. 1. Shown here are plots, at various 

temperatures above and below the Bose- 

condensation temperature Tc, of k2n(k)/2x 2 

versus k,  where n(k) is the momentum distri- 

bution of an ideal Bose gas of density p. As 

the temperature decreases toward T,., k2n(k) 

deviates more and more from the classical 

prediction of a (Gaussian) Maxwell-Boltzmann 

momentum distribution. At temperatures be- 

low Tc, a nonzero fraction h ( T )  of the bosons 

occupies the zero-momentum state, and n(k) 

includes a delta-function contribution equal 

to no(T)p(2~)36(k). Thus k2n(k) increases 

as k approaches 0 and exhibits a positive 

discontinuity at k = 0. 

BOSE-CONDENSATE FRACTION 
IN AN IDEAL BOSE GAS 

Fig. 2. The Bose-condensate fraction in an 

ideal Bose gas with a density equal to that 
4 

of liquid He increases monotonically from 

0 at its Bose-condensation temperatue (3.3 

kelvins) to 1 at absolute zero. 

Los Mamas Science Summer 1990 



The Condensate Saga 

DEPARTURE OF LIQUID ' ~ e  
FROM IDEAL-GAS BEHAVIOR 

Fig. 3. (a) The potential V(r )  for the interaction 

between atoms in liquid "He is steeply repul- 

sive (positive) at interatomic distances below 

about 2.6 angstroms. At larger distances van 

der Waals forces cause the potential to be 

weakly attractive (negative). Such an inter- 

action potential, which differs enormously 

from that of an ideal gas, leads to spatial 
4 correlations between the atoms in liquid He. 

(b) Shown here is the pair-correlation function 

g(r) for superfluid ' ~ e  determined by neutron 

diffraction. It is proportional to the probability 

distribution for finding two atoms of super- 

fluid "He a distance r apart. Comparison of 

g(r) and V(r) reveals that the atoms in the 

superfluid tend to stay in the attractive well 

of the potential, outside its steeply repulsive 

core. 

(a) ^ ~ e - ~ H e  Interaction Potential (b) Superfluid "He Pair-Correlation Function 

momentum state. He pointed out that the Bose-condensation temperature of a sys- 
tem of non-interacting atoms having the same mass and density as 'He is 3.3 kelvins 
and is thus remarkably close to the observed '*He superfluid-transition temperature 
of 2.17 kelvins. London's hypothesis also suggests why liquid 'He behaves so dif- 
ferently from liquid '*He at low temperature: The spin-statistics relation for ferrnions 
forbids Bose condensation of 'He atoms. London's analogy between 'He and a sys- 
tem of non-interacting bosons is imperfect because the atoms in liquid helium inter- 
act strongly. Such interatomic interactions have a significant effect on the momen- 
tum distribution of a quantum system. As shown in Fig. 3a, the interaction poten- 
tial between 'He atoms is strongly repulsive at interatomic distances less than 2.5 
angstroms and weakly (van der Waals) attractive at larger distances. Therefore the 
atoms tend to stay a minimum of 2.5 angstroms apart. Indeed, as shown in Fig. 3b, 
the pair-correlation function, g(r), for liquid 'He (which is proportional to the prob- 
ability distribution for finding two 'He atoms a distance r apart) has a maximum at 
about 3.5 angstroms. Now, since liquid helium is a quantum system obeying the 
Heisenberg uncertainty principle, the correlation in the positions of the the atoms 
must result in a spread in the probability of their occupying any of the momentum 
states. In particular, the tendency of 'He atoms to stay at least 2.5 angstroms apart 
results in an expected width of the momentum distribution of Ak = (2d2.5)  kl, 
or about 2 A ' .  Thus, even at absolute zero interacting atoms have a finite kinetic 
energy of (H^k)2/2rn, which is termed the zero-point energy. The uncertainty in the 
atom's momentum increases its kinetic energy above the classical value at any tem- 
perature. 

For most atomic systems the zero-point energy is too small to prevent crystal- 
lization at low temperatures. The only exceptions are 'He and ' ~ e .  At pressures 
below tens of atmospheres, helium atoms tend to sit in the shallow potential well 
created by the weakly attractive van der Waals force, but their comparatively low 
masses result in zero-point kinetic energies that are higher than the van der Waals po- 
tential energy. Only at very high densities are the atoms close enough that their po- 
tential energy due to the steeply repulsive part of the potential exceeds the zero-point 
energy and produces crystallization. Thus the low-temperature phase diagram for ' ~ e  
(Fig. 4) shows crystallization above 25 atmospheres. At lower pressures *He remains 
a liquid down to absolute zero. Moreover, along the so-called A line 'He undergoes 
the phase transition from the normal to the superfluid state. 

The really daring aspect of London's hypothesis was to propose that, despite the 
strong interactions between 'He atoms, which tend to broaden the momentum distri- 
bution, the superfluid should contain a non-negligible fraction of atoms in the zero- 
momentum state. The remaining atoms should have a broad momentum distribution 
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that remains wide (about 2 A ' )  even at zero temperature because of zero-point mo- 
tion. (Superfluid flow is attributed to Bose condensation into a state other that the 
zero-momentum state. Coherent interactions among the ^He atoms stabilize the flow 
against scattering processes, which tend to dissipate flow in normal fluids.) 

London's hypothesis began what has been called the condensate saga-the story 
of numerous attempts by theorists to calculate the Bose-condensate fraction and by 
experimentalists to measure it. The condensate fraction has been elusive, and the 
saga has had many twists and turns. Both the existence and the size of the Bose- 
condensate fraction in superfluid H e  have remained very controversial subjects. 
Most of the successful theories of superfluid helium (developed by, among others, 
Lev Landau, L. Tisza, and London) do not invoke a many-atom wave function at a 
microscopic level and especially not a Bose condensate. Rather, most of the remark- 
able properties of superfluid helium can be explained by the two-fluid model in which 
a macroscopic wave function extending throughout the sample corresponds to the su- 
perfluid component of the fluid, and elementary excitations out of the superfluid state, 
the so-called phonons and rotons, correspond to the normal component of the fluid. 
At zero temperature all the atoms are condensed into the macroscopic wave function, 
and helium consists entirely of superfluid. As the temperature is raised above zero, 
the number of thermally excited phonons and rotons increases, and they act as a nor- 
mal fluid component. At TA,  where the number of thermally excited elementary ex- 
citations equals the number of atoms in the system, the entire system becomes a nor- 
mal fluid. This two-fluid description can account successfully for many experiments 
on superfluid 'He. Thus establishing a theoretical connection between the two-fluid 
model and the many-atom wave function is unnecessary to successful prediction of 
most macroscopic experiments. However, a goal of microscopic (atomic level) theory 
has been to predict the parameters of the two-fluid model, now obtained by fitting 
the model to macroscopic experiments. Until we achieve such a connection between 
the microscopic and macroscopic theories, we cannot determine no from macroscopic 
experiments. 

Nevertheless, many theorists over the years have spent an enormous effort on 
the microscopic theory of superfluid ' ~ e .  One goal has been to calculate no, and 
indeed the entire momentum distribution, from first principles (ab initio) and the 
measurable interatomic potential. In addition to scientists' gut-level "need-to-know," 
many other factors motivate this enterprise. Helium is arguably the simplest among a 
wide variety of strongly interacting many-body systems currently under intense study 
by condensed-matter physicists. Those systems relate to such fashionable topics as 
high-temperature superconductors, heavy-fermion metals, the quantized Hall effect, 
and so on. Countless theoretical methods developed for and tested on helium have 

PHASE DIAGRAM OF ' ~ e  

Fig. 4. At pressures below 25 atmospheres, the 

zero-point energy of liquid "He is sufficiently 

large to prevent its solidification, even at 

a temperature of absolute zero. The liquid 

phase is separated by the A line into normal- 

fluid and superfluid phases. At atmospheric 

pressure the superfluid-transition temperature 

TA is 2.17 kelvins, which is not much different 

from the Bose-condensation temperature of 

an ideal Bose gas of the same density (3.3 

kelvins). The critical point shown in the phase 

diagram gives the pressure and temperature 

at which the liquid and gas phases of "He 

form one phase. 
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subsequently provided the key to understanding more complex systems. Also, su- 
perfluidity in helium shares many similarities with superconductivity in metals, so 
that work on helium can be directly related to technologically important questions. 
Finally, the microscopic theory of helium, one of the most strongly interacting many- 
body systems, presents a fundamental challenge. 

Progress in ah initio many-body calculations of the properties of liquid helium 
has been dramatic, especially since the advent of supercomputers in the last decade, 
The names of the methods employed are characteristically arcane (variational wave 
function, Green's function Monte Carlo, and path-integral Monte Carlo, for example) 
and reflect their great diversity. Nevertheless, the results of all these methods have 
converged on the conclusion that the Bose-condensate fraction should exist in super- 
fluid '^He but not in the normal fluid and that its value should be about 10 percent 
at Lero temperature. Hence, measurements of no provide a fundamental test of the 
predictive power of modern condensed-matter theory. 

A seminal suggestion made by P. Hohenberg and P. Platzman in 1966 still re- 
mains the best hope for a direct measurement of momentum distributions in liquid 
helium. It involves neutron-scattering experiments at momentum and energy transfers 
sufficiently high that the struck atoms acquire kinetic energies much larger than the 
binding energies in the liquid. Under such conditions (hopefully!) the impulse ap- 
proximation, which approximates the scattering from the many-atom system as the 
sum of scatterings from individual free atoms, is valid, and the observed scattering 
cross section is a direct measure of the momentum distribution in the sample. Anal- 
ogous experiments are of interest in all of modem physics because momentum distri- 
butions are measurable properties of all many-particle wave functions, provided the 
energy and momentum transfers are high enough. X-ray Compton scattering at en- 
ergies on the order of tens of keV can measure electron momentum distributions in 
atoms and solids, electron scattering at a few GeV can measure nucleon momentum 
distributions in nuclei, and electron scattering at hundreds of GeV can measure quark 
momentum distributions in nucleons. Scattering at very high energy transfers relative 
to the binding energies of a system is called deep inelastic scattering. 

The suggestion of Hohenberg and Platzman initiated an effort that has lasted 
more than twenty years and has involved over one hundred experimentalists at reac- 
tor and pulsed neutron sources all over the world. The effort has spawned improve- 
ments in spectrometers and advances in data-analysis procedures. The attempted 
momentum-distribution measurements have used neutrons with energies between 10 
and 1000 meV. Increases in neutron energy have been made in order to come closer 
to the regime in which the impulse approximation is valid. The goal of inferring the 
value of no from the data inevitably involves accounting for instrumental broadening, 
statistical and background uncertainties, and corrections to the impulse approximation 
necessitated by the finite neutron energies available. Although the condensate saga 
through 1987 included many (often conflicting) indirect determinations of no, it did 
not include any direct observation of the delta function in the momentum distribution 
of superfluid ' ^ ~ e  predicted by the London theory. Direct experimental evidence for a 
Bose condensate in superfluid helium was weak. 

This article presents the latest episode in the condensate saga-a recent break- 
through in confirming the existence and size of the Bose-condensate fraction. New 
experiments using the high epithermal flux of a pulsed neutron source are in excellent 
agreement with sophisticated new ab initio calculations of momentum distributions, 
provided that the prediction of the impulse approximation is broadened by final-state 
interactions according to a first-principles theory developed by the author. Experi- 
ment and theory on the momentum distributions of 'He have converged, and both are 
consistent with a condensate fraction of 9.2 percent in the superfluid at zero temper- 
ature. The story of the breakthrough is accompanied by a discussion of its implica- 
tions for the study of other condensed-matter systems. 
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Neutron Scattering and the Impulse Approximation 

As mentioned above, the best hope for measuring momentum distributions in 
helium is neutron scattering at high momentum and energy tranfers. To understand 
why, let's review what we learn from neutron-scattering experiments (see also "Neu- 
tron Scattering-A Primer" in this issue). The double differential scattering cross 
section, or the scattering per unit solid angle f2 and per unit energy transferees, is 
defined as 

where o[[̂ is the total neutron-scattering cross section of a single helium atom, 
k, and kf are the initial and final neutron wave vectors, the energy transfer hes = 

({^/1mn){k12 - k; ) ,  mn is the neutron mass, ?iQ = 15 1 ki - kf 1 is the momentum trans- 
fer, and S (Q , es) is the dynamic structure factor (also sometimes termed the neutron 
scattering law ). 

As discussed in the primer, S (Q, w) is the Fourier frequency and spatial trans- 
form of the time-dependent pair-correlation function of the liquid. Measurement 
of S (Q,  w) provides a rich variety of information on the properties of quantum flu- 
ids. By the uncertainty principle experiments at Q values smaller than or compara- 
ble to the inverse of the interatomic spacing (that is, at Q < a few A ' )  are sen- 
sitive to the collective behavior of helium atoms. For example, diffraction exper- 
iments, which involve elastic scattering (ki = kf) ,  yield the static structure factor 
S (Q)  = d(fies)S (Q . u). The Fourier transform of S (Q) for ' ~ e  yields the pair- 
correlation function shown in Fig. 3b. And experiments involving inelastic scattering 
(ki =/ kf) at low Q determine the spectrum of elementary excitations (phonons and 
rotons) in ' ^ ~ e .  

On the other hand, inelastic-scattering experiments at Q values much larger than 
a few A '  probe individual atoms rather than collective behavior. That fact led to 
Hohenberg and Platzman's suggestion for using such experiments to measure the mo- 
mentum distributions in helium. They assumed, first, that if the energy transfer is 
large compared to typical binding energies in the condensed phase (which are on the 
order of meV), then the initial binding energy of the atoms could be ignored, and 
second, that if the energy transfer is very large compared to the potential energy of 
the scattered atoms in the condensed phase, then a struck atom in its final state will 
be negligibly affected by the surrounding atoms and may be considered to be a free 
particle. Those assumptions imply that neutron scattering at very high energy and 
momentum transfers may be approximated as scattering from a collection of free he- 
lium atoms with initial momenta pi distributed according to the momentum distribu- 
tion ^(pi) and with final momenta pf = pi +hQ (Fig. 5).  The approximation that the 
neutrons scatter from a collection of free atoms is termed the impulse approximation 
(IA). The dynamic structure factor in the impulse approximation is given by 

where p is the density of the liquid helium, En = p2/2m, m is the mass of the he- 
lium atom, and the delta function is an expression of energy conservation. Note that 
S IA(Q,  w) is normalized so that its integral overdo: is unity at large Q .  

The important feature of the impulse approximation is that it provides the de- 
sired simple relation between the neutron scattering law for helium and its momen- 
tum distribution. But how do we know whether an experiment has been performed 
at conditions for which the impulse approximation is valid? Equation 2 implies that, 
at a given value of Q ,  a plot of the observed S (Q, w )  versus w should have a sin- 
gle peak that is symmetric about the recoil energy of an atom at rest, hrecoll = EQ. 

Neutron 

I 

- - - - - -  
TiQ, 'ha 

\ 

KINEMATICS FOR 
IMPULSE APPROXIMATION 

Fig. 5. According to the impulse approxima- 

tion, neutron scattering from liquid ~e can 

be regarded, at sufficiently high momentum 

and energy transfers, as scattering from 

free atoms. That situation is depicted here 

schematically. Arrows represent the momenta 

of a neutron and a helium atom before and 

after scattering. The dashed line represents 

the momentum KQ and energy Ku transferred 

to the helium atom during the scattering. Mo- 

mentum conservation demands that pf pi + 
f iQ,  where pi and pf are, respectively, the initial 

and final momenta of the helium atom. Be- 

cause the binding energy of the helium atoms 

is ignored in the impulse approximation, the 

difference between the energies of a helium 

atom before and after scattering is simply 

equal to the difference in its kinetic energies 

before and after scattering, (1/2m)($ - n2). 

Furthermore, energy conservation requires 

that (1/2m)(*~ - f t2)  =/Ãˆ(*Ã 
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Moreover, sincehw - E n  + E p  = Fzw -hwrecoil - Q . p i / m ,  the peak width should be 
proportional to Q times the width of the momentum distribution. 

In the presence of a Bose condensate, the initial momentum distribution should 
have the form 

" (p i )  = nop(2~r f0~ f i (~ ) (p i )  + n*(pi) ,  (3) 

where ^ ( p i )  is a three-dimensional delta function and n*(pi )  is a smooth momentum- 
distribution function for the remainder of the atoms. Combining Eqs. 2 and 3 yields 
a unique form for the dynamic structure factor in the impulse approximation: 

where S a Q ,  w )  is the contribution to the scattering law from n*(pi) .  A Bose- 
condensate peak in the momentum distribution should show up as a delta function 
in the observed S ( Q ,  w )  at fiw = Eno, and no should equal the fraction of the integral 
of the observed S ( Q ,  w )  over Fiw contributed by the delta function. It is this simple 
prediction that has motivated the condensate saga, that is, the many attempts to ob- 
serve the condensate by neutron-scattering experiments. 

More generally, the impulse approximation, which assumes the helium atoms 
scatter neutrons as if they are free particles, predicts that the scattering is no longer 
a function of w and Q separately. Rather, the energy-conservation delta function in 
Eq. 2 forces a relationship between w,  Q ,  and k l l ,  the component of an atom's initial 
wave vector parallel to the direction of the momentum transfer: kl l  = ( m / h 2 ~ ) ( F i w  - 
F ^ ~ ~ / 2 m ) .  To express this fact we can introduce a new variable Y ,  first suggested by 
Geoffrev West: 

Then we rewrite S ( Q ,  w )  in terms of a function that depends on Y rather than w: 

Eqations 5 and 6 are essentially redefinitions (since Y is just a dummy variable and 
has not been given a physical interpretation) and are therefore valid whether or not 
the impulse approximation is valid. The quantity J (Y , Q )  is termed the Compton 
profile and was used to plot the results of seminal experiments by A. H. Compton 
and J. DuMond in the 1920s that measured the electron momentum distributions in 
atoms and metals by x-ray scattering at keV energies. Compton and Dumond plotted 
their results in terms of pv, but, because the impulse approximation was valid in their 
experiments, pi1 is identically equal to hY . 

The advantage of expressing scattering laws as Compton profiles is that, in the 
impulse approximation, J ( Y ,  Q )  depends only on Y and not on Q ,  a phenomenon 
we refer to as Y -scaling. In particular the Compton profile for liquid helium in the 
impulse approximation is given by 

Note that the momentum distribution in Eq. 7 depends only on the magnitude of k 
because the liquid is isotropic. If the impulse approximation is valid, then it should 
be possible to extract no and n ( k )  from neutron scattering experiments by direct in- 
version of Eq. 7. 

We will now examine whether conditions for the impulse approximation, which 
implies Y -scaling, have been met experimentally. We will also consider the possibil- 
ity, first suggested by West, that Y -scaling is independent of the validity of the im- 
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(a) Momentum Distributions (b) Compton Profiles 
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pulse approximation. In other words, even when conditions for the impulse approx- 
imation are not met, the Compton profile may still depend only on Y .  Scaling phe- 
nomena are of intense interest throughout modem physics, for they occur whenever 
the number of variables involved in a measurement on a physical system exceeds the 
number of relevant length or energy scales for the system. Thus, observation of scal- 
ing is indicative of a fundamental simplicity of the physical system being studied. In 
the case of high-energy neutron scattering from helium, the number of relevant vari- 
ables might, in principle, be on the order of the number of atoms in a typical 
sample. Observation of Y -scaling would indicate that the number of relevant vari- 
ables has been reduced to one. In the impulse approximation the relevant variable is 
k l l ,  and it determines the scattering through the momentum distribution. Later when 
we discuss corrections to the impulse approximation due to final-state effects, we will 
present a theory in which the scattering law obeys Y -scaling but Y does not equal kll 
and has an alternative interpretation. 

Theoretical Predictions 

To advance from qualitative arguments to quantitative predictions for neutron- 
scattering experiments, we need to consider the theoretical predictions for momen- 
tum distributions that are used as input to the impulse approximation. A wide va- 
riety of many-body calculational methods have been developed and applied to cal- 

culate the momentum distributions in helium. Remarkably, the most straightfor- 
ward method, which involves perturbative expansion in the potential about the non- 
interacting ground state using Feynman-diagram (field-theory) methods, works poorly 
for helium. The reason is that the He-He potential (Fig. 3a) is singular (infinite) 
at short distances. Thus, an infinite-order resummation of the perturbative expan- 
sion is required in order to obtain nonsingular answers. (We return to this point in 
the sidebar "How Final-State Effects Were Really Calculated.") However, several 

PREDICTION OF BOSE CONDENSATE 
BY AB INITIO THEORY 

Fig. 6. (a) An ab initio calculation of the 

momentum distribution n(p) in superfluid 

helium at absolute zero (red curve) exhibits 

a delta-function spike at p = 0, which is 

interpreted as the signature of a Bose- 

condensate fraction in the superfluid of about 

9.24 percent. As expected, an ab initio 

calculation of n(p) in normal-fluid helium at 

3.3 kelvins lacks a delta-function spike at 

p = 0. The acronyms GFMC and PIMC refer 

to calculational methods described in the 

text. (b) The theoretical Compton profiles 

M Y )  shown here were calculated by using 

the theoretical momentum distributions as 

input to the impulse approximation. The 

integral over Y of each Compton profile is 

unity. The fraction of the integral of the 0.32- 

kelvin &(Y) contributed by its delta-function 

spike is the Bose-condensate fraction at that 

temperature. 
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methods have been developed that avoid the pathologies of perturbative expansions 
for strong potentials. 

One approach is to invoke a quantum-mechanical variational principle that al- 
lows one to calculate the momentum distribution by minimizing the energy of trial 
wave functions for the ground state of 'He. The most successful of such variational 
methods is the hypernetted chain (HNC) approximation. Another approach, termed 
the Green's function Monte Carlo (GFMC) method, is to use a stochastic Monte 
Carlo algorithm to solve the many-body Schrodinger equation for the ground-state 
wave function. A third approach, termed the path-integral Monte Carlo (PIMC) 
method, is to invoke the path-integral formulations of quantum mechanics and sta- 
tistical mechanics originally proposed by Feynman to solve for the momentum dis- 
tribution as a sum over classical paths in imaginary time. The path-integral method 
is especially applicable to nonzero temperatures, whereas the variational and Green's 
function methods, which calculate the ground-state wave function, yield the momen- 
tum distribution at zero temperature only. 

Figure 6a shows the momentum distribution predicted by the GFMC method 
for superfluid 'He at absolute zero and the momentum distribution predicted by the 
PIMC method for normal-fluid 'He at 3.3 kelvins. The GFMC method yields a delta 
function in the zero-temperature momentum distribution at p = 0 corresponding to a 
Bose-condensate fraction of 9.2 percent, much less than the non-interacting value of 
100 percent. (The HNC method also yields a delta function at p = 0 and the same 
value for no.) The PIMC calculation, which has been carried out only for T > 1 
kelvin, shows a condensate fraction that tends toward the GFMC and HNC value 
at the lowest temperature calculated and tends toward zero as the temperature ap- 
proaches TA. At T >. TA the PIMC method yields a momentum distribution that is 
smooth and approximately Gaussian, as seen in Fig. 6a for T = 3.3 kelvins. The 
widths of all these momentum distributions are roughly equal to the Ak w 2 A '  
that we estimated heuristically from examination of the He-He potential and the pair- 
correlation function for liquid 'He. 

Using the GFMC and the PIMC momentum distributions of Fig. 6a to calculate 
the Compton profiles in the impulse approximation yields the theoretical predictions 
for J}A(Y) shown in Fig. 6b. Note that a delta-function peak at Y = 0 is predicted for , 

the superfluid at temperatures below TA, whereas a smooth J I A ( Y )  is predicted for the 
normal fluid at temperatures above TA. 

Experimental Results 

The critical experimental issue for momentum-distribution measurements is to 
achieve conditions at which the impulse approximation may be valid, namely, high 
values of Q and w. To do so requires neutrons with relatively high energies, on the 
order of hundreds of meV. Because the spectrum of neutrons from a reactor is a 
Maxwell-Boltzmann distribution that peaks at 23 meV, the neutron flux decreases 
exponentially with further increases in energy. Therefore, reactor experiments are 
generally limited to Q values less than 12 A ' .  Many experiments on 'He have been 
done at reactor sources, and the most carefully analyzed data lie in the Q range be- 
tween 4 A '  and 7 A ' .  However, in this Q range the deviations from the impulse 
approximation are large. 

More recently, experiments have also been done at pulsed neutron sources. In 
order to maintain short pulse widths for time-of-flight experiments, pulsed neutron 
sources have an undermoderated neutron specturm; that is, a relatively large fraction 
of the neutrons fail to reach a thermal distribution before they exit the moderator. 
Thus, the flux of high-energy neutrons decreases only inversely with increasing en- 
ergy, so higher energy and momentum transfers are achieved. In 1986 a team headed 
by Paul Sokol of The Pennsylvania State University organized an effort to build a 
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chopper spectrometer optimized for momentum-distribution studies. The spectrom- 
eter, known as Phoenix, was built at the Intense Pulsed Neutron Source at Argonne 
National Laboratory. Phoenix has provided data at Q values up to 24 A ' .  The 
pulsed-source experiments thus more closely approach conditions at which the im- 
pulse approximation might be valid. They also permit much greater control of the 
instrumental resolution function than do reactor experiments. 

Figure 7 shows experimental data for the Compton profile of superfluid ' ~ e .  
(The 7-A-1 and 1 2 - A 1  data were obtained at a reactor source and the 2 3 - A '  data 
were obtained at a pulsed neutron source. Each data set is broadened by an approxi- 
mately Gaussian instrumental resolution function with a full width at half maximum, 
AYpwHM, of about 0.6 A 1 . )  At first glance all the data sets look symmetric and cen- 
tered at Y = 0. Moreover, the widths and shapes of the Jem(Y, Q) appear to be in- 
dependent of Q, in agreement with our expectations for Y -scaling of the Compton 
profile. The width not only fits our heuristic estimate of 2 A ' ,  which was based on 
a consideration of zero-point energies, but also is comparable to the prediction of ab 
initio theory (see Fig. 6b). 

However, a more careful examination reveals some discrepancies with this sim- 
ple picture. Note that the 7- A '  data are slightly asymmetric and the peak center 
is shifted to the left of Y = 0. The asymmetry is still present but smaller in the 12- 
A-1 data and is smallest in the 23- A '  data. Additional reactor data at Q < 12 A-1 - 

Y-SCALING OF MEASURED 
COMPTON PROFILES 
FOR SUPERFLUID ' ~ e  

Fig. 7. Each of the measured Compton 
4 profiles, Jem{Y, Q), for superfluid He shown 

here is broadened by a Gaussian instrumental 

resolution function with a full width at half 

maximum of about 0.6 A .  The 7- A and 

the 1 2 - A 1  data were taken at a reactor, 

and the 2 4 - A '  data were taken at a pulsed 

neutron source. Note that each data set lies 

approximately on the same curve irrespective 

of the Q value at which it was obtained. In 

other words, the measured Compton profiles 

exhibit the Y-scaling predicted by the impulse 

approximation. Also note that small deviations 

from the impulse approximation, in the form 

of an asymmetry in the peak shape and a 

leftward shift of the peak center, are visible in 

the 7- and 1 2 - A  data. 

show that the width of the peak does not remain constant but rather oscillates about 
an average value as Q increases. These observations call into question the validity of 
the impulse approximation for the reactor Q range. Moreover, no reactor experiment 
has shown a well-resolved delta-function peak due to a Bose condensate. 

Heretofore the above discrepancies have been minimized by data-analysis pro- 
cedures that include symmetrizing the data and averaging over several Q. The data- 
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INSTRUMENTAL RESOLUTION 
FUNCTION FOR PHOENIX 

Fig. 8. The chopper spectrometer known as 

Phoenix is located at the Intense Pulsed Neu- 

tron Source at Argonne National Laboratory. 

Its instrumental resolution function, Rl(Y) ,  

at Q = 24 A '  was calculated by a Monte 

Carlo simulation and checked by experiments 

on samples whose scattering is well doc- 

umented. Theoretically predicted Compton 

profiles must be convolved with R l ( Y )  before 

being compared with Phoenix data. 

analysis procedures have assumed that some additional unknown mechanism broad- 
ens the impulse approximation and thereby broadens the delta function that would 
be produced by the Bose condensate. To determine the Bose-condensate fraction, the 
data are fit to a model for the momentum distribution in which no is the only free 
parameter, and data at T > TA are used to fix the momentum distribution for the re- 
mainder of the atoms. Some authors claimed that these procedures lead to a value for 
the condensate fraction of about 10 percent. The rune in the opening illustration of 
this article was drawn in 1983 to celebrate those claims and the seventy-fifth jubilee 
of the discovery of liquid helium. However, the data-analysis procedures leading to 
the claims had a serious conceptual error. The most credible value for no obtained 
by model-fitting procedures is between 4 and 5 percent, in serious disagreement with 
ab initio calculations of momentum distributions. That is where the condensate saga 
stood in 1986 when we entered the picture. 

As mentioned earlier, three new elements have converged to resolve the question 
of the momentum distributions in ^ ~ e .  First, instruments at pulsed neutron sources 
have yielded more accurate data at higher Q values. Second, highly accurate many- 
body calculations of momentum distributions have become feasible on supercomput- 
ers. And third, a new theory for the broadening of the impulse approximation due to 
final-state effects has been developed by this author. The new theory of final-state 
effects eliminates model fitting and permits a direct comparison between ah initio 
theory and experiment. 

Before discussing final-state effects, we need to show more clearly the discrep- 
ancies between theory and experiment. The best data for comparison with theory is 
the pulsed-source data of Sosnick, Snow, Sokol, and Silver obtained at Q = 24 A '  
with the Phoenix instrument. To compare theory with the measured Compton pro- 
file, we must first determine the instrumental resolution function of the spectrometer, 
RI(Y). We used a Monte Carlo simulation of the Phoenix spectrometer to calculate 
Rf l ) ;  the result (Fig. 8) was confirmed by experiments on samples whose scatter- 
ing is well known. We then convolve Ri(Y) with the theoretical Compton profile, 
J(Y , Q), to obtain a prediction for Jexp(Y, Q), the measured Compton profile: 

where the symbol (8 denotes convolution. 
Figure 9a compares theory and experiment for the normal fluid at 3.3 kelvins. 

The theoretical prediction for Jexp(Y, Q) was calculated by using the PIMC momen- 
tum distribution for the normal liquid as input to the impulse approximation and con- 
volving the result with RI(Y) according to Eq. 8. Despite the absence of adjustable 
parameters, the agreement between ab initio theory and experiment is excellent. 

A similar comparison between theory and experiment for the superfluid at 0.32 
kelvin is shown in Fig. 9b. The fact that the superfluid data are more sharply peaked 
around Y = 0 than the normal-fluid data suggests changes in the momentum distri- 
bution that might be associated with the presence of a Bose condensate. The theo- 
retically predicted Jem(Y, Q)  for the superfluid was calculated by using the GFMC 
momentum distribution as input to the impulse approximation and convolving the re- 
sult with RI(Y). Although the predicted width of J(Y) agrees with experiment, the 
data are much less sharply peaked in the region around Y = 0 than the impulse- 
approximation prediction. If we now fit the data using the data-analysis procedures 
previously applied to reactor data, then we might conclude that the Bose-condensate 
fraction in the superfluid is much smaller than the theoretical value of 9.2 percent. 
Instead we believe that the discrepancies apparent in Fig. 9b between ah initio theory 
and experiment require corrections to the impulse approximation according to a new 
theory of final-state effects. 
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(a) Normal-Fluid ' ~ e  

lllll~ll Experiment ( Jem) 
Impulse Approximation (JlA8 Rl ) ---- HP Final-State Effects (JIAis Rl 8 RE)  

Final-State Effects 

(b) Superfluid ' ~ e  

e 

The impulse approximation, the basis for all the ab initio calculations discussed 
so far, assumes that the incident neutrons scatter from free helium atoms. In reality, 
however, after an atom is struck by a neutron, it interacts with neighboring atoms in 
the liquid (see opening illustration). Those interactions, which result in a broaden- 
ing of the impulse approximation, are called final-state effects. Although the last two 
decades have produced many calculations of final-state effects, the various theories 
have been controversial and many conflicting results have been published. As a pre- 
lude to our recent work on final-state effects, we shall review only those theories that 
directly contribute to our current understanding. 

The earliest and simplest theory of final-state effects was put forward in 1966 by 
Hohenberg and Platzman. Here we give the heuristic argument leading to their result 
for final-state broadening. After a helium atom with initial momentum pi is struck 
by a neutron, it collides with neighboring atoms at a rate 1 / r  = patotd(Q)KQ/m, 
where r is the average time between collisions, ot,,t~(Q) is the total cross section for 
scattering of a helium atom with momentum HQ from other helium atoms, and we 
assume h Q  Ã pi. The Heisenberg uncertainty principle implies that the energy of the 
recoiling atom should have an uncertainty of H / r .  To account for that uncertainty, we 
alter Eq. 2 by adding to the final neutron energy Epf an imaginary part called a self 
energy, Yip, = -iK/2r. The energy-conserving delta function in Eq. 2, 6(hw - E,, + 
En.) = W E )  = (1/271/0 f T  dt exp(it AE/K), is replaced by a new delta function: 

With this replacement it is straightforward to derive that J(Y,  Q) is a convolution 
of the impulse approximation with a broadening function due to final-state effects, 

RFS(Y,Q); that is, 
J(Y,Q) =RFS ̂ J~A. (10) 

EXPERIMENTAL COMPTON PRO- 
FILES COMPARED WITH THEORY 

Fig. 9. The experimental Compton profiles, 

Jexp(Y, Q), for (a) normal-fluid * ~ e  and (b) 

superfluid " ~ e  are based on 2 4 - A '  Phoenix 

data obtained at 3.5 kelvins and 0.32 kelvin, 

respectively. Shown for comparison (solid 

curves) are the Compton profiles calculated by 

convolving the predictions of ab initio theory 

and the impulse approximation (Fig. 6b) 

with the Phoenix instrumental resolution 

function (Fig. 8). Note that the impulse 

approximation agrees well with experiment 

only in the case of normal-fluid " ~ e .  Also 

shown (dashed curves) are the Compton 

profiles calculated by convolving the solid 

curves with Hohenberg and Platzman's final- 

state-broadening function, R^(Y). Note that 

the dashed curves deviate substantially from 

the data. 
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0 (A') 
TOTAL ' ~ e - ~ ~ e  SCATTERING 
CROSS SECTION 

Fig. 10. The small oscillations, or hard-sphere 

glories, in this plot of utotai(Q) versus 0 are 

an Interference effect due to the symmetry 

requirement on the two-boson wave function. 

However, apart from those oscillations the 

cross section decreases linearly with In 0. As 

a result, the neutron scattering law also has a 

logarithmic dependence on Q at large Q and 

thus approaches the impulse approximation 

(which is independent of Q) only very slowly 

(see Fig. 13). 

The final-state broadening function should have a Lorentzian form: 

where 

As we will see later, many features of this early theory coincide with our current 
model of final-state broadening. For example, both models predict that the full width 
at half maximum of the broadening has the form 

Moreover, if the potential is infinitely steep (hard core) and thus ntotaI(Q) is indepen- 
dent of Q, the final-state-broadened J (Y,  Q) of the Hohenberg and Platzman model 
obeys Y -scaling even if the impulse approximation is not applicable, a result in ac- 
cord with the original suggestion of West and a feature of our model also. Unfortu- 
nately, nature has not been so kind: We see in Fig. 10 that, instead of being constant, 
ototai(Q) is a logarithmic function of Q (apart from small glory oscillations, which 
are an interference effect due to the Bose-Einstein spin-statistics relation). The loga- 
rithmic dependence of utotaI(Q) reflects the steepness of the He-He potential at short 
distances (see Fig. 3a). It also implies that even at very high Q the impulse approxi- 
mation cannot be applied directly. Instead Y -scaling is approximately true (the devia- 
tions vary as In Q), and corrections for final-state effects must be made. 

Although the Hohenberg and Platzman model shares many features with our 
present model, it is not completely correct for two reasons. First, the exact kinetic- 
energy sum rule (w2) on S (Q, w) requires that, at high Q, 

That is, final-state effects should not affect the second moment, or Gaussian width, of 
J (Y , Q). The form for RFs(Y, Q) given in Eq. 11 does not satisfy the kinetic-energy 
sum rule and, in fact, yields an infinite value for the integral in Eq. 13. Second, 
the broadening predicted by Eq. 11 is much larger than is observed experimentally. 
For example, Fig. 9a shows that convolution of the Hohenberg-Platzman broadening 
function with the PIMC impulse-approximation prediction for the normal fluid yields 
a J(Y) that is in serious disagreement with the data. 

The additional qualitative physics required to complete the theory for final-state 
effects was first proposed by Gersch and Rodriguez in 1973, but their results were 
ignored in more than twenty subsequent theoretical papers on final-state effects as 
well as in the many papers analyzing the reactor experiments. In 1987 this author 
independently developed a theory embodying the same qualitative physics but im- 
plying new many-body techniques (see "How Final-State Effects Were Really Cal- 
culated"). The new theory predicted exactly the results obtained soon after from the 
new pulsed-source experiments. 

Here we present a heuristic description of the new theory. As discussed ear- 
lier, the atoms in liquid *He are not uniformly distributed in space; rather they are 
distributed according to the pair-correlation function shown in Fig. 4. At Q values 
of many A ' ,  the motion of an atom recoiling from a neutron collision can be de- 
scribed heuristically by a classical trajectory. Figure 3b shows that initially an atom 
is likely to be in the attractive part of the potential and that, after being struck by 
a neutron, the atom travels for some distance,before it begins to collide with the 
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steeply repulsive cores of the potentials of neighboring atoms. The collision rate, 
1 / ~ ,  depends on the recoil distance x = tRQ/m: l / r (x)  w p g ( x ) ~ ~ ~ ~ ~ ~ ( Q ) f i Q / m .  
Since g(x) is zero at small x ,  there will be no scattering at short recoil times. Also, 
since g(x) approaches unity at large x, the scattering rate should approach the Ho- 
henberg and Platzman prediction at long recoil times. With this reasoning we de- 
duce that the self energy to be used in Eq. 9 depends on the recoil distance; that is, 
Sp (x )  = -ifi/2~(x). The result for the final-state broadening then becomes 

where again F = $ ~ o ~ ~ ~ ~ ~ ( Q ) .  The Hohenberg and Platzman prediction, Eq. 11, can 
be obtained from Eq. 14 in the limit of a structureless fluid (g(r) Ã‘ 1). However, 
unlike Eq. 11, Eq. 14 satisfies the kinetic-energy sum rule because, in fact, g(0) = 0. 
Note also that the broadening given by Eq. 14 has the same FWHM as the broad- 
ening of Hohenberg and Platzmann, but it is negative at large \Y\ in order to satisfy 
the sum rule. A somewhat more accurate field-theoretic version of the new theory is 
discussed in the sidebar. 

In the new theory the scaling variable, Y, acquires a new physical interpretation 
as the variable conjugate to the distance traveled by a recoiling atom. In the limit 
of a hard-core potential (that is, rtotal(Q) = 2 7 4 ,  where r0 is the hard-core radius 
and the factor of 2 accounts for forward diffractive scattering), final-state effects be- 
come a geometric problem that depends only on r0 and the relative atomic positions 
given by g(r). In quantum mechanics the position of an atom, in this case the re- 
coil distance x,  is not a variable distinct from its momentum. Rather, they are con- 
jugate variables in the sense of a Fourier transform. Hence, introducing the relative 
positions of the atoms introduces no new variables into the problem, and Y -scaling 
will continue to hold even though the impulse approximation does not. Remember, 
all this assumes otota1 is independent of Q. If we now include the Q dependence 
of D ~ ~ ~ ~ ~ ( Q ) ,  we have indeed introduced a new variable and Y -scaling breaks down. 
However, since in practice ctota1(Q) varies approximately as ln Q,  the corrections to 
Y -scaling in our theory are logarithmic, that is, slowly varying with Q. 

Figure 11 shows the final-state broadening function predicted by the somewhat 
more sophisticated version of our theory presented in the sidebar. To make experi- 
mental predictions we must convolve JIA(Y) with the RFs(Y, Q) of Fig. 1 1 and with 
the R,(Y, Q)  of Fig. 8. The results for the normal fluid and the superfluid are shown, 
together with the pulsed-source data, in Figs. 12a and 12b, respectively. The agree- 
ment between theory and experiment is now excellent for both the normal fluid and 
the superfluid! Experiment and theory both converge to a Bose-condensate fraction in 
the superfluid of 9.2 percent. We emphasize that the many-body calculations of mo- 
mentum distributions and the theory for final-state effects were completed before the 
pulsed-source experiments were performed, so that in this case ah initio theory ac- 
curately predicted experiment. Further experiments by Sokol and collaborators show 
excellent agreement over the entire quantum-liquid region of the phase diagram of 
4He and at a variety of Q. 

Implications of the Breakthrough 

BROADENING FUNCTION 
PREDICTED BY NEW FSE THEORY 

Fig. 11. Shown here is the broadening func- 

tion, RFs(Y), predicted by the author's new 

theory of final-state effects (FSE). The full 

width at half maximum of RFS(Y), like that 

of Hohenberg and Platzman's final-state- 

broadening function, is given approximately 

by ~ o - ~ , , t ~ ~ ( Q ) .  However, j* dY Y&(Y)  = 0, 

and thus, unlike Hohenberg and Platzman's 

final-state-broadening function, Rps(Y) satis- 

fies the exact kinetic-energy sum rule on the 

neutron scattering law. 

The convergence of theoretical and experimental routes to the momentum dis- 
tributions of H e  has finally confirmed London's fifty-year-old hypothesis connecting 
superfluidity with the existence of a Bose condensate-and may thus be considered 
a triumph for modem condensed-matter physics. The success of the momentum- 
distribution calculations provides confidence in the new supercomputer calculational 
methods for many-body quantum systems. The new theory of final-state effects points 
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(a) Normal-Fluid ' ~ e  (b) Superfluid * ~ e  

CONVERGENCE OF THEORY 
AND EXPERIMENT 

Fig. 12. Convolution of the impulse approxi- 

mation (Fig. 6b) with the broadening function 

given by the author's final-state-effects theory 

(Fig. 11) yields predicted Compton profiles 

that agree well with the data for both (a) 

normal-fluid 'He and (b) superfluid ' ~ e .  

The agreement for normal-fluid ' ~ e  arises 

because the sum rule satisfied by the new 

final-state broadening function ensures that 

final-state effects do not change the width 

of the normal fluid's essentially Gaussian 

momentum distribution. In the case of super- 

fluid "He, both theory and experiment yield 

a Bose-condensate fraction of about 9.24 

percent. 

toward novel perturbative methods for calculating the dynarnical response of strongly 
correlated systems (see sidebar). And the success of the experiments with the Phoenix 
spectrometer demonstrates the utility of high fluxes of epithermal neutrons in measur- 
ing quantities of fundamental scientific importance. However, the convergence does 
not mean that the condensate saga is finally at an end. Like many research break- 
throughs, this one has important implications for future research. 

If the ab initio calculations of momentum distributions in '^He are correct, the 
data are consistent with no other theory for final-state effects except that of the au- 
thor. Thus we believe that the new theory, or improved versions thereof, can be 
used with confidence to interpret and predict future experiments on momentum dis- 
tributions in condensed-matter systems. The fact that the new theory predicts much 
smaller final-state effects than those predicted by Hohenberg and Platzman is en- 
couraging. However, the theory also tells us that final-state broadening washes out 
sharp structure in the momentum distribution and that, because AY cc utotai(Q) (see 
Eq. 12), the broadening decreases only slowly with increasing Q. Figure 13 shows 
theoretical predictions for J (Y,  Q) for increasing values of Q. Note that the broaden- 
ing in the region near Y = 0 decreases, but only slowly, as Q increases from 30 to 
270 A ' .  Thus the theory predicts that the Bose-condensate fraction will not produce 
a sharp peak in J (Y) in any feasible neutron-scattering experiment. This prediction 
should be an important test of the new theory. 

To analyze reactor experiments, the theory will have to be augmented to account 
for the additional deviations from the impulse approximation that are observed at Q 
values less than 12 A 1 .  Among those deviations are the oscillations in the width 
of J(Y,  Q) with Q and the asymmetry about Y = 0. Both effects may be due to 
collective behavior in the condensed phase. 

Perhaps the most important momentum-distribution experiment to attempt is ob- 
servation of the Ferrni-surface discontinuity in ' ~ e  (that is, the discontinuity in n(p) 
at p = pp). Figure 14 shows the momentum distribution of a gas of non-interacting 
ferrnions with the same density as ' ~ e .  Also shown are the momentum distribution 
for ' ~ e  predicted by using HNC calculations as input to the impulse approxima- 
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tion and the "apparent" momentum distribution that would be inferred by analyzing 
final-state-broadened data as if the impulse approximation did not require corrections 
for final-state effects. In the absence of final-state effects, the discontinuity in n{p) 
would cause a sharp change in slope in JIA(Y, Q) at Y = p f i .  Unfortunately, the 
new theory of final-state effects predicts that such a change in slope will not be di- 
rectly apparent in the data. Nevertheless, experiments can distinguish the HNC the- 
ory from other theories that do not have a Fermi-surface discontinuity (such as the 
pairing theory of Lhuillier and Bouchaud). The HNC theory would predict a different 
Gaussian width for J ( Y ,  Q)  than would other theories. Experiments on 'He are par- 
ticularly difficult because ' ~ e  is a strong absorber of neutrons (and is therefore the 
primary component of thermal-neutron detectors!). Nevertheless, we hope that theory 
and experiment will resolve the question of the Fermi-surface discontinuity in 'He in 
less time than the more than twenty years required to confirm the existence and size 
of the Bose condensate in ^He. 

At the beginning of this article, we mentioned that 'He becomes a superfluid 
at 3 millikelvins. Does that mean a Bose condensate forms in 'He despite the spin- 
statistics relation? The answer is no. Superfluidity in ' ~ e  is caused by the formation 
of Cooper pairs of 'He atoms and is thus somewhat analogous to superconductivity 
in metals, which is caused by formation of Cooper pairs of electrons. The differ- 
ence is that the Cooper pairs of 'He atoms are uncharged and form a relative p-wave 
bound state, whereas the Cooper pairs of electrons in metals are charged and usually 
form a relative s-wave bound state. 

The present experimental and theoretical techniques for determining momentum 

Predicted for Ideal Fermi Gas with --------------- 1 Density of Liquid ' ~ e  

Inferred for 3 ~ e  by Analysis of "Data" 
without Correcting for Final-State 

- 
Q Predicted f o r 3 ~ e  by HNC and - 
c Impulse Approximations 

0.1 - 
I 

I 
0.01 1 , , 1 , , 1 , 1 1  I , ,  

0.0 0.5 pf 1 .O 1.5 

p ~ n  (A"') 

distributions in helium can also be applied to questions concerning the pressure and 
temperature dependence of the condensate fraction, the non-existence of a Bose con- 
densate in solid ^He, the non-existence of a Fermi surface in solid 'He, the behav- 
ior of n(p) at high lpl (which many-body theories predict is exponential rather than 
Gaussian even in the normal quantum liquid), the larger no predicted for ^He in a 
porous medium (which is expected to behave like a low-density Bose system), the 
complex momentum distributions expected for mixtures of 'He and '^He, the pre- 
dicted absence of a Bose condensate in the two-dimensional ̂ He systems produced 
by physisorption of ^He on surfaces, and so on. All such experiments will benefit 
from the epithennal neutrons provided by pulsed neutron sources or by hot sources 
at reactors because they all require measurements at high Q values. Although con- 
ditions suitable for applying the impulse approximation may never be reached, the 
final-state corrections will be understood. 

Y (A') 

CAN THE BOSE CONDENSATE 
IN ' ~ e  BE OBSERVED DIRECTLY? 

Fig. 13. The author's theory of final-state ef- 

fects predicts that the Compton profile of "He 

at absolute zero sharpens only slowly with in- 

creasing Q near Y = 0, the region relevant to 

the Bose condensate. That prediction implies 

that the Bose condensate will not produce a 

distinct peak in the Compton profile at any ex- 

perimentally feasible Q. 

CAN THE FERMI SURFACE 
IN ' ~ e  BE OBSERVED DIRECTLY? 

Fig. 14. The Paul! exclusion principle implies 

that, at absolute zero, the momentum distri- 

bution of an ideal Fermi gas is a step function 

with a discontinuity of 1 at the Fermi sur- 

face, that is, at the momentum of the highest 

filled momentum state, pp. Shown here, as a 

dashed curve, is the absolute-zero momentum 

distribution of an ideal Fermi gas with the 

same density as He ,  for which pp//Ã = 0.789 
*-I . Also shown, as a red curve, is the 

absolute-zero momentum distribution pre- 

dicted for real (interacting) ' ~ e  by the HNC 

approximation. The discontinuity remains 

at 0.789 A 1 ,  but its magnitude is reduced. 

Finally, the black curve is the "apparent" 

momentum distribution, which is inferred as 

follows. First, the impulse approximation 

prediction (at 30 A )  obtained by using 

the red curve as input is convolved with a 

final-state broadening function appropriate 

to H e .  The resulting final-state-broadened 

"data" are then analyzed by assuming the 

validity of the impulse approximation but not 

correcting for final-state effects. Note that the 

momentum distribution so inferred exhibits 

no discontiniuty at pp because, like the delta 

function at k = 0 in the momentum distribu- 

tion of superfluid " ~ e ,  it has been washed out 

by final-state effects. 
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Y-SCALING IN 
ELECTRON-NUCLEON SCATTERING 

Fig. 15. Shown here are Compton profiles 

based on data for the quasi-elastic scattering 
12 

of electrons from the C nucleus at various 

relativistic four-momentum transfers. The 

Y variable has been generalized to include 

relativistic kinematics. The scattering follows 

Y-scaling for Y < -0.1 GeVIc, as evidenced 

by the fact that all the profiles fall on the same 

curve in that region. Y-scaling breaks down 

at greater Y values because of excitation of 

internal degrees of freedom of the nucleons 

making up the nucleus, such as the A(1238 

MeV) excited state. If final-state effects are 

ignored, the impulse approximation suggests 

that the nucleon momentum distribution 

decreases exponentially with p over nearly 

four decades. A theoretical explanation for 

this almost universal behavior is the subject 

of current research. Determining whether the 

momentum distribution of helium quantum 

fluids behave similarly at large p would prove 

interesting, but the poorer signal-to-noise 

ratio in neutron-scattering experiments has 

so far prevented such an experiment. 

Going beyond helium, we are now ready to expand our knowledge of momen- 
tum distributions to a wide variety of many-body quantum systems. For example, 
quasi-elastic electron-nucleus scattering (QENS) at GeV energies is aimed at mea- 
suring the momentum distributions of nucleons in nuclei. Even though the energy 
scale characteristic of QENS differs by ten orders of magnitude from the energy scale 
of neutron scattering from helium, the two types of experiments share many com- 
mon elements, including Y -scaling phenomena, the importance of final-state effects, 
and the methods for calculating properties of the many-particle wave functions. Fig- 
ure 15 shows J (Y,  Q) for electron scattering from the ^C nucleus. For Y < 0 the 
Compton profile exhibits a relativistic analogue of Y -scaling over nearly four orders 
of magnitude in J (Y,  Q). For Y > 0 excitation of internal degrees of freedom of 
the nucleons, such as the A(1238 MeV) resonance, destroys the Y -scaling. Note also 
the nearly exponential dependence of J(Y , Q) on \Y 1. We do not know whether the 
exponential dependence is a property of the underlying momentum distribution or is 
a manifestation of final-state effects. That question has been as important in nuclear 
physics as the existence of a Bose condensate in helium. Thus we plan to make the 
extension of our final-state theory to nuclei a high priority. 
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How final-state effects 
were really calculated 

T 
he derivation of final-state broadening presented in the main text was phys- 
ically intuitive but, like all heuristic arguments, involved a sleight of hand: 
The classical-trajectory concept was not derived from first principles. In prac- 

tice, the theory of final-state effects is a very difficult many-body problem. Conven- 
tional perturbative expansion about the non-interacting ground state, a technique so 
successful in calculating the properties of weakly interacting systems, is not a use- 
ful approach here because helium atoms interact at short distances through a steeply 
repulsive potential. However, alternatives to perturbation methods, such as the varia- 
tional and Monte Carlo methods, are capable of handling strongly interacting systems 
and thus have been most successful in calculating ground-state properties of helium, 
including the momentum distribution n ( p )  and the pair-correlation function g ( r ) .  

In order to test the ground-state results against neutron-scattering experiments, 
we need to calculate the dynamical response of the system to neutron scattering. 
Since we have an obvious interest in not repeating the considerable work involved 
in generating the ground-state results, we want to calculate the response by applying 
perturbation theory to the variational and Monte Carlo results for the ground state. 
However, conventional perturbation theory is again out of the question because the 
dynamical response also involves helium-helium interactions. 

Before we present our solution to this problem, let's outline the starting point. 
We assume that neutron scattering at momentum transferh Q  introduces, at time zero, 
a fluctuation about the ground state in the density of atoms with wave vector Q .  By 
calculating the amplitude of that density fluctuation at a later time t and taking its 
Fourier transform, we can determine S (Q , w ) ,  the observed scattering law. (Note 
that w  is conjugate to t . )  The density fluctuation is equal to a summation over all 
so-called particle-hole excitations about the ground state, that is, over all processes 
that add to the ground state an atom with wave vector k  + Q  and remove from the 
ground state an atom with wave vector k .  

In the impulse approximation we assume that the particle-hole excitations prop- 
agate freely without interacting with other atoms. Final-state effects, on the other 
hand, are due to interaction of the excitations with other atoms. Scattering of a par- 
ticle and a hole creates more particle-hole excitations about the ground state. Al- 
though in principle an infinity of multiple scatterings of a particle-hole pair can oc- 
cur, the correlations in the ground-state wave function imply that only single addi- 
tional particle-hole excitations need be considered. In effect, the correlations screen 
the steeply repulsive core interaction at short distances, rendering that interaction fi- 
nite. After all, to minimize their energy in the ground state, the atoms tend to sit in 
the attractive part of the potential, far away from its steeply repulsive core. Thus the 
effective final-state interactions can be characterized by a small parameter, and per- 
turbation theory can be used for systematic, controlled calculations. 

The divergent terms in the perturbative expansion of S ( Q ,  w )  involve all pro- 
cesses that transform a (k + Q ,  k )  particle-hole pair to a (k' + Q ,  k') pair. To obtain 
finite results, those divergent terms must be explicitly resummed to all orders in the 
perturbation expansion. In practice, the summation is accomplished by defining a 
"projection superoperator," which acts in the Hilbert space of (k + Q ,  k )  particle-hole 
excitations about the ground state much as ordinary operators act in the Hilbert space 
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Neutron Scattering Law = Impulse Approximation + New Final-State-Effects Theory 

k 
Particle-Hole Excitation 
by Neutron Scattering 

k' k 
Particle-Hole Excitation 
by Particle Scattering 

NEW THEORY OF 
FINAL-STATE EFFECTS 

The author approximates the neutron scatter- 

ing law for helium as the sum of the impulse 

approximation and one additional scattering 

that accounts for final-state effects. Shown 

here are Feynman diagrams for that approxi- 

mation. The Feynman diagram for the neutron 

scattering law represents the propagation of a 

particle-hole excitation that removes a particle 

of wave vector k from the ground state and 

adds to the ground state a particle of wave 

vector k + 0. Arrows denote the direction of 

momentum flow. Arrows pointing right denote 

particle lines; arrows pointing left denote hole 

lines. Only the particle lines carry high mo- 

mentum. The hatched area denotes the exact 

result for S(0, w) including all scatterings of 

particles and holes. The Feynman diagram 

for the impulse approximation indicates that 

both particles and holes propagate without 

scattering. The Feynman diagram. for the 

final-state effects indicates that each particle 

scatters from another atom and creates a new 

particle-hole excitation. (Further scatterings 

are possible but not included in the approxi- 

mation.) The shaded square is the two-particle 

density matrix describing the correlations be- 

tween the two holes in the ground state 

created by the two particle-hole excitations. 

The hole-hole correlations are related by sum 

rules to the pair-correlation function of the 

ground state. The dashed lines represent the 

two-particle t-matrix that describes particle 

scattering. Because the hatched area appears 

in the Feynman diagrams for both the neutron 

scattering law and the final-state effects, 

the scatterings that transform a (k + 0, k) 

excitation to a (kt + 0, kt)  excitation must be 

calculated self-consistently. 

of quantum-mechanical states. The neutron scattering law then equals the expectation 
value of the projection superoperator, and calculations analogous to ordinary pertur- 
bation theory can be carried out in the superoperator Hilbert space. The effective 
interaction is the two-atom scattering matrix multiplied by a ground-state correlation 
function, which acts to screen the short-distance pathologies of the potential. Addi- 
tional restrictions on the important scattering processes are obtained by noting that 
all k entering a two-particle density matrix must be characteristic of the ground-state 
wave function, as given by the momentum distribution, and that Q  is much larger 
than those characteristic values. 

After the above procedure is implemented, the neutron scattering law can be 
expressed as the sum of the impulse approximation and one additional scattering 
process. The accompanying figure shows the Feynman diagrams for the components 
of the sum. In the Feynman diagram for the one additional scattering process, the 
dashed line represents the t-matrix describing the scattering of two particles and the 
square represents the two-particle density matrix for the ground state. The latter ma- 
trix is a generalization of the correlation functions, such as g ( r )  and n ( ~ ) ,  that char- 
acterize the ground-state wave function. 

If we approximate the density matrix in terms of g ( r )  and n ( p )  in a way that- 
satisfies sum rules and, since Q  is large, use a semiclassical approximation for the t -  
matrix, then the final "Dyson" equation can be solved analytically. The result for the 
final-state broadening, R ( Y ,  Q ) ,  is given by 

where 

The phase shift 61, is the semiclassical value for scattering at impact parameter h. 
The above expression for R ( Y ,  Q ) ,  which is somewhat more complicated than 

Eq. 14 in the main text, is the expression we have plotted in Fig. 11 of the main text 
and used in comparing theory with experiment. It is essentially the same as the fa- 
miliar Wentzel-Kramers-Brillouin ( W K B )  classical-trajectory approximation taught in 
elementary quantum mechanics except that the potential, V ( x ) ,  is replaced by an "op- 
tical potential," f t 2 ~ r ( x ) / r n  that accounts for all repeated scatterings from the same 
helium atom. The quantity h^~I ' (cm)/rn  is simply the forward scattering t-matrix for 
the scattering of two helium atoms. The approach taken here is required for helium, 
a strong scatterer, but it is satisfying that the result reduces to the W K B  approxima- 
tion in the limit of a weak scatterer. 
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